Article in ASME’s Mechanical Engineering Magazine: “How the Food Web Can Keep the Electricity Flowing” by Jean Thilmany

“Whether intended or not, engineered, industrial systems often mirror those found in the natural world. Case in point: the relationship between today’s electrical power grid and the way food chains function.

Drawing on principles from bio-designed systems—in this case, the food web—will help scientists build more resilience into the electrical power grid, said Astrid Layton, an assistant professor of mechanical engineering at Texas A&M University. She collaborates with Katherine Davis, an A&M assistant professor of electrical engineering, on the project.

A more resilient power grid means reducing the damage from outages and shorten their duration, Layton said.”https://www.asme.org/topics-resources/content/how-the-food-web-can-keep-the-electricity-flowing

Purdue’s Environmental & Ecological Engineering Department Graduate Seminar

Excited to share our BiSSL group’s research to the Environmental & Ecological Engineering Department at Purdue! Feel free to virtually stop by if you’re free, I’ll be talking about “Ecosystems as Design Inspiration for Resilient and Sustainable Human-Engineered Networks.”

Seminar Abstract: Biological ecosystems have been through millions of years of R&D, producing complex networks of interacting species that are able to support individual needs while maintaining system-level functions. In this talk, Dr. Layton will show that biological networks offer a relatively untapped source of design inspiration for improving the sustainability and resilience of our human-engineered networks. Quantitative descriptors and analysis techniques are adapted from ecology through close collaboration with ecologists, enabling desirable ecosystem characteristics to be used as optimization guides for industrial resource networks (or eco-industrial parks, EIPs), water networks, supply chains, and power grids. Characteristics such as a high level of cycling of materials/energy within the system and a unique balance between redundant and efficient pathways are connected back to the achievement of traditional engineering goals such as cost and robustness.

Texas A&M’s Civil and Environmental Engineering Department: Environmental, Water Resources, and Coastal Engineering Graduate Seminar

Honored to have been invited to give a graduate seminar in A&M’s Civil Engineering Department for the Environmental, Water Resources, and Coastal Engineering students. Feel free to virtually stop by if you’re free, I’ll be talking about my research regarding “Bio-Inspired System Design: Using Nature to Improve the Resilience and Sustainability of Our Water Networks.”

Seminar Abstract: Biological ecosystems have been through millions of years of R&D, producing complex networks of interacting species that are able to support individual needs while maintaining system-level functions. In this talk Dr. Layton will show that biological networks offer a relatively untapped source of design inspiration for improving the sustainability and resilience of our water distribution networks. Quantitative descriptors and analysis techniques are adapted from ecology through close collaboration with ecologists, enabling desirable ecosystem characteristics to be used as optimization guides for industrial water networks. Characteristics such as a high level of cycling of materials/energy within the system and a unique balance between redundant and efficient pathways are connected back to the achievement of traditional engineering goals such as cost and robustness.