Huge congratulations to BiSSL alum Jessica Ezemba on her first authored paper being accepted to the Journal of Mechanical Design!

Jessica was an undergraduate researcher student in BiSSL while at Texas A&M. Her work combining her interest in brain injuries with bio-inspired design turned into a full-length journal article that has now been accepted for publication in the Journal of Mechanical Design. Jessica is currently a graduate student at Carnegie Mellon University in their MIIPS program and is planning on pursuing a Ph.D. thereafter.

The paper is titled “Bio-Inspired Avenues for Advancing Brain Injury Prevention” and can be found here:

Abstract: “Bio-inspired design is a highly promising avenue for uncovering novel traumatic brain injury prevention equipment designs. Nature has a history of providing inspiration for breakthrough innovations, particularly in cases when the traditional engineering mindset has failed to advance problem solving. This work identifies patterns and trends in the ways that nature defends against external stimuli and predators, investigating them with the goal of highlighting promising inspiration for brain injury prevention. Two key strategies were found missing in engineering applications while identifying patterns and strategies used in nature: 1) connections between layers in multi-layered material structures and 2) the use of multiple strategies in a single design. Nine organisms are highlighted in detail as examples of patterns in biological methods of protection, both on a macro and microscale. These findings include the coconut’s shell, the pomelo fruit’s peel, the golden scale snail’s shell, the ironclad beetle’s exoskeleton, the woodpecker’s skull, the Arapaima fish’s scales, conch shells, and the dactyl club of shrimp. The results highlight knowledge gaps preventing these findings from being applied as well as recommendations for moving towards their use in engineering design.”

(2022) *Ezemba, J.; Layton, A. “Bio-Inspired Avenues for Advancing Brain Injury Prevention.” Journal of Mechanical Design. DOI: 10.1115/1.4055737