New BiSSL publication in the journal Integrative & Comparative Biology

June 20, 2025

A paper coauthored by Ph.D. student Hadear Hassan and Dr. Layton titled “Improving Cross-Disciplinary Knowledge Transfer for Bio-Inspired Engineering Design” has been published in the Integrative And Comparative Biology (ICB) journal. The work covers a 4 year study of the bio-inspired engineering design inspiration process, looking at how the technical level of biological information impacts the success of the resultant engineering designs. The work finds that a staggered approach may be the most beneficial, starting with basic references like those from National Geographic or zoos and following up the initial design generation round with highly technical and detailed journal articles to provide more functional details.

“Bio-inspired design has become a significant driver of innovation, enabling the development of effective solutions to some of the world’s toughest challenges. Bio-inspired design leverages evolutionary advancements to create products and processes that are often more efficient and sustainable. However, applying biological insights to engineering can be challenging due to the distinct ways the two disciplines define and interpret core concepts. This paper explores the cognitive and technical skills required to effectively translate biological inspiration into engineering solutions. Our hypothesis focuses on bridging the “language and representation gap” between biology and engineering. The goal of this paper is to identify key aspects of biological representation that enable its successful adaptation into engineering design, fostering the development of more impactful and efficient bio-inspired solutions. The analysis of student feedback and ideation outputs revealed that engineers preferred biology texts with a medium level of technical complexity, balancing ease of understanding with image quantity. Basic references were found to support diverse idea generation, while more technical texts proved useful and necessary for understanding in-depth biological insights and applying them to engineering problems. Future research could explore the impact of information presentation order, the role of biological experts in deepening insights, and the use of machine learning to refine how biological information is selected and categorized to enhance the bio-inspired design process.” – Hassan and Layton. (2025) “Improving Cross-Disciplinary Knowledge Transfer for Bio-Inspired Engineering Design.” Integrative & Comparative Biology. DOI: 10.1093/icb/icaf119

Normalized student usefulness ratings per reference, based on reading ease (FRE) across the 3 reference categories (technical-blue circles, general-orange triangles, and basic-green squares). The red horizontal and vertical shading bars highlight the most frequently selected range for FRE if technical references, which falls between 28 and 45, along with their corresponding normalized voting quantity ranging from 0.65 to 1.

Leave a comment