PhD Student Hadear Hassan Presents at MSEC

June 26, 2025

Ph.D. student Hadear Hassan presented research on a dynamic model that uses bio-inspired design principles to evaluate manufacturing systems for sustainability and resilience, especially under disturbances, while linking system qualities to performance metrics like capital cost and demand met at the 2025 Manufacturing Science and Engineering Conference (MSEC), hosted by Clemson University in Greenville, SC. The paper was a collaboration with Amira Bushagour, Dr. Abheek Chatterjee, and Dr. Astrid Layton.

The paper presented is titled “Quantitatively Supporting System-Level Sustainability and Resilience in Manufacturing.”

BiSSL PhD student Hadear Hassan presenting at the 2025 MSEC conference.

Abstract: “Manufacturing is a key driver of both economic health and environmental burdens, reporting over 12.7 million workers in the U.S. and emitting 30% of greenhouse emissions. Manufacturing systems thus must be both sustainable and resilient to mitigate environmental degradation and maintain job security and operations in case of disturbances. Doing both in manufacturing, however, is non-trivial and quantitatively ambiguous. This work investigates a bio-inspired approach to quantitatively design for both. Twenty manufacturing floor plan architectures are evaluated using a bio-inspired system design approach and traditional manufacturing metrics. Ecological Network Analysis has been shown in prior work to offer system design guidance inspired by nature’s resilient and sustainable food webs. Traditional metrics such as capital cost, throughput, and capacity utilization correlate these ecological characteristics with manufacturing-specific goals for the first time. The architectures, in both their traditional and bio-inspired architectures, are tested under disturbance scenarios to determine if the bio-inspired designs offer superior performance from a manufacturing perspective. The evaluation highlights interdependencies between metrics that capture circular economy supporting efficient pathways and resilience supporting manufacturing convertibility. The results also form the beginnings of an assessment framework for the use of low data metrics in the early-stages of manufacturing systems design.” Hassan, H., A. Bushagour, A. Chatterjee, A. Layton. (2025) “Quantitatively Supporting System-Level Sustainability and Resilience in Manufacturing.” ASME Manufacturing Science and Engineering Conference (MSEC). Greenville, SC, USA.

Leave a comment