Two student-led conference papers accepted to the 2021 IDETC-CIE conference!

Three BiSSL students have had conference papers accepted to the 2021 International Design Engineering Technical Conference! Ph.D. candidate Abheek Chatterjee and MS student Tyler Wilson have co-authored a paper on modifying bio-inspired system design methodologies for supply chains, enabling the impact of storage to be considered when applying resilience characteristics from nature. MS student Garrett Hairston has had his first, first-authored paper accepted that focuses on using a system perspective to develop net-zero design guidelines for multi-use (industrial, residential, commercial) communities from biological food webs.

Abstract: “Supply chain policies and design efforts are traditionally focused on efficiency objectives such as reducing operational costs. With the occurrence of the most devastating pandemic in decades and the continually increasing prevalence of natural disasters, this focus has been challenged, and the need to focus on supply chain resilience has become apparent. Achieving long-lasting sustainable development in supply chains requires a balance of efficiency-focused measures that enhance economic and environmental sustainability and resiliency measures. Ecological Network Analysis has revealed a unique balance between pathway efficiency and redundancy in ecosystems’ network architecture. This enables both efficient operations under normal circumstances and resilience to perturbations. This same analysis can be used to evaluate the balance of sustainability and resilience in supply chain networks, providing insights into what kind of supply chain design and policy decisions lead to more ecosystem-like architectures. This study lays the groundwork for such efforts by studying four supply chain topologies (formed by prevalent supply chain strategies) using ENA. Inventory (storage) is not well understood in the typical flow analysis used in ENA but is an essential facet of supply chain design and must be included in a supply chain analysis. This study overcomes this limitation by proposing a method to include inventory in the ENA framework. The analysis conducted revealed two significant insights: (a) the agile supply chain strategy is the most ecologically similar and (b) it is possible that there are optimal inventory levels (given partnership strategies) to utilize bio-inspiration in supply chain design.”

Wilson, Tyler, Abheek Chatterjee, and Astrid Layton (2021) “Developing a Supply Chain Modeling Approach to Facilitate Ecology-Inspired Design for Sustainability and Resilience.” ASME 2021 International Design Engineering Technical Conferences and Computers & Information in Engineering Conference, virtual, August.

Abstract: “Much emphasis is placed on the role of Net Zero Communities (NZCs) in achieving a sustainable future. Systems research on the topic, including the application of bio-inspired techniques already used on other human networks, is currently hindered by the lack of case studies documenting the structure and quantity of energy, water, and waste flows within realistic NZCs. This work proposes and preliminarily tests a method of generating a database of hypothetical-realistic NZCs by expanding the system boundaries for well-documented Eco-industrial Park (EIP) networks. The expansion includes residential and commercial actors from the community surrounding the EIP. Past studies using Ecological Network Analysis (ENA) to improve the environmental and economic performance of these EIPs have resulted in a quantitative database of case studies. Combining these industrial hubs to nearby residential, commercial, agricultural, etc. actors can generate potential multi-use networks on which similar design work can be conducted. Three EIP to NZC cases are generated and analyzed focusing on their system structure. Cyclicity, an ENA metric used to quantify the presence and complexity of cyclic pathways in a network, has been shown to promote the efficient use of resources in both biological and human networks. Cyclicity values for the original EIP networks, the community additions, and the potential NZC case studies reveals that there are many meaningful interactions that occur between actors that are only visible once the system boundaries are expanded to the NZC level. This offers a glimpse into the potential benefits of approaching the NZ problem, and sustainable living more generally, on a system scale – an analysis that will be further enabled by the generation of an NZC database initiated by this work.”

Hairston, Garrett, and Astrid Layton (2021) “An Eco-Industrial Park-Based Method for Net Zero Community Creation.” ASME 2021 International Design Engineering Technical Conferences and Computers & Information in Engineering Conference, virtual, August.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s